Mechanism
This section needs additional citations for verification. (October 2017) (Learn how and when to remove this template message)
|
Since 1967, the International System of Units (SI) has defined the second as the duration of 9192631770 cycles of radiation corresponding to the transition between two energy levels of the caesium-133 atom. In 1997, the International Committee for Weights and Measures (CIPM) added that the preceding definition refers to a caesium atom at rest at a temperature of 0 K.[15]
This definition makes the caesium oscillator the primary standard for time and frequency measurements, called the caesium standard. The definitions of other physical units, e.g., the volt and the metre, rely on the definition of the second.[16]
The actual time-reference of an atomic clock consists of an electronic oscillator operating at microwave frequency. The oscillator is arranged so that its frequency-determining components include an element that can be controlled by a feedback signal. The feedback signal keeps the oscillator tuned in resonance with the frequency of the electronic transition of caesium or rubidium.
The core of the atomic clock is a tunable microwave cavity containing a gas. In a hydrogen maser clock the gas emits microwaves (the gas mases) on a hyperfine transition, the field in the cavity oscillates, and the cavity is tuned for maximum microwave amplitude. Alternatively, in a caesium or rubidium clock, the beam or gas absorbs microwaves and the cavity contains an electronic amplifier to make it oscillate. For both types the atoms in the gas are prepared in one electronic state prior to filling them into the cavity. For the second type the number of atoms which change electronic state is detected and the cavity is tuned for a maximum of detected state changes.
Most of the complexity of the clock lies in this adjustment process. The adjustment tries to correct for unwanted side-effects, such as frequencies from other electron transitions, temperature changes, and the spreading in frequencies caused by ensemble effects.[clarification needed] One way of doing this is to sweep the microwave oscillator's frequency across a narrow range to generate a modulated signal at the detector. The detector's signal can then be demodulated to apply feedback to control long-term drift in the radio frequency. In this way, the quantum-mechanical properties of the atomic transition frequency of the caesium can be used to tune the microwave oscillator to the same frequency, except for a small amount of experimental error. When a clock is first turned on, it takes a while for the oscillator to stabilize. In practice, the feedback and monitoring mechanism is much more complex.
A number of other atomic clock schemes are in use for other purposes. Rubidium standard clocks are prized for their low cost, small size (commercial standards are as small as 17 cm3)[13] and short-term stability. They are used in many commercial, portable and aerospace applications. Hydrogen masers (often manufactured in Russia) have superior short-term stability compared to other standards, but lower long-term accuracy.
Often, one standard is used to fix another. For example, some commercial applications use a rubidium standard periodically corrected by a global positioning system receiver (see GPS disciplined oscillator). This achieves excellent short-term accuracy, with long-term accuracy equal to (and traceable to) the U.S. national time standards.
The lifetime of a standard is an important practical issue. Modern rubidium standard tubes last more than ten years, and can cost as little as US$50.[citation needed] Caesium reference tubes suitable for national standards currently last about seven years and cost about US$35,000. The long-term stability of hydrogen maser standards decreases because of changes in the cavity's properties over time.
Modern clocks use magneto-optical traps to cool the atoms for improved precision.
Source :
Related Article :
0 comments